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On the Use of a Cumulative Distribution as a Utility

Function in Educational or Employment Selection

James J. Chen and Melvin R. Novick

4
The University of Iowa

Abstract

Formal decision theory can make important contributions to educational

or employment decision-making, provided one can quantify the utilities of

different possible outcomes such as test scores, grade-point averages or
other common outcome variables. Utility is usually a monotonic increasing

function of true ability or performance score. A cumulative probability

function is then very convenient for describing one's utilities. Moreover,

calculations of expected utility of a decision is greatly simplified when

the utility and the probability function have the same functional form,
e.g. both normal. A least-squares procedure for fitting a utility

--function is described and applied to truncated normal and beta distribution

functions.
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Introduction

Bayesian approaches to the problems of selection or certification

have been discussed by several authors. Gross and Su (1975), Petersen

(1976), and Huynh (1976, 1977) use threshold utility or a constant loss

function to derive the cut-off scores in various models. Van der Linder,

and Mellenbergh (1977) extend the utility (loss) function to a linear

form. Novick and Lindley (1978) suggest using a parametric utility

function. They discuss several advantages of using a cumulative

distribution as a utility function and recommend using the cumulative

normal utility function. However, one restrictive property of the

cumulative normal utility is its symmetry about the meant. This v.an h

avoided by using only a portion of a symmetric function, e.g. a

truncated normal function, or using a non-svmmetric function, e.e. a beta

function.

In this paper we consider using a truncated normal or a generalized

beta cumulative distribution function (cdf) as a utility functicn. We will

refer to them as a truncated normal utility (TNU) and a generalized beta

utility (GBU) respectively. Applications of the two utility functions will

be discussed specifically. A TNIJ and a GBI! both have the advantaste of bein;, cumuli-

tive distribution functions and at the same time they provide incrvas..d f %i, : it,..

in applications. For example, it can be symmetrical between risk-avrsiul1 and

risk-proneness or it can be rlsk-averse or risk-prone throughout its range.

Moreover, if the utility and the posterior distribution have the same functional

form, both normal or both beta, then the computations of the expected

utility becO.me simple.F. The major problem In utilizing utility theory is the assessment of the,

utility function. Procedures for obtaining a utility function have been

M_
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given by Kosteller and Noget (1951), 1Prart, Raifra and Schlnifer (1965),

Schlaifer (1969), and Keeney and RaLffa (1976). One of the difficulties

in utility assessment is resolving the incoherence of subjects. In

resolving subject incoherence, one can require a subject to give more than
* I

the minimum number of judgments in fitting a utility function. In this

paper we discuss a procedure for fitting R cumulative utility function based on

I fixed state least-squares utility assessment as given by Novick and

Lindley (1979).'I

4
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A Truncated Normal Utility

Consider the problem of educational or personnel selection.

Let 0 denote the ability (or a measure of performance) of an applicant

and u(e) be the utility for selecting an applicant with ability 6. Assume

the range of o is [o,0 fl then a truncated normal utility (TNU) function

is defined by

0(O) = 0 < 0 < 0n (1)

-1 1- 41
where V and a are respectively the mean and standard deviation and

0 () is the standardized normal distribution function. Hence, a TNU

uses only a portion of a normal cumulative function. The utilities at

the two end points are 0 and 1.

To investigate the behaviors of a person from the utility function,

Pratt (1964) develops the risk aversion function r(0) for a measure of risk

aversion of a utility function, where

r() 2- UM / dU ()

If r(e) is positive at 0 0 '" then U(9) is risk-averse at e';

if r(O) is negative at 9' then U(6) is risk-prone at 0'; and if r(0)

is zero at 0' then U(8) is risk neutral at 0'. The risk aversion

function for the TNU defined in (1) is

tJ I(O 0 < I I
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Thus, the sign of r(O) depends on the position of 1j. if 0 < i * theno

r(O) is positive for all 0 , U(O) is risk-averse through its range.

If n'1,then r(O) is negative for all 0 , U(e) is risk-prone through

its range. If 0° <0 < 0 then r(0) is negative for 8 <i and positive

for 0 > M, U(o) is risk-prone for low 0 values and risk-averse for

high 0 values. This property is true for most unimodal distribution

functions. Since the derivative of the risk aversion function in the

normal case is

This implies that U(O) has strictly increasing risk aversion. This

characteristic is particularly useful in educational selection.

For 0 <1 <0 a TNU reflects a decision maker who is risk-taking for

low ability O,and risk-avoid for high ability 0; and his willingness

to take the risk decreases as 0 increases. This seems reasonable and

common in educational selection.

Finally, for 00 < 1 <0 the limiting forms of the TNU become

very simple. If o-0o then

U() = 1 for 0 >

j0 for 0 <

This is a threshold utility with threshold point at 0- u. And if 3 --

then

U(13) 0 0o , 00 0 n
0 0
n 0

The utility becomes a linear function with slope (0n - 0o)
(This result also holds for tj > 0 or 1 0 ). Thus, for 0 o

n o)

the function results in a smooth curve so that thl, lower lorLi ml

(e < u') is convex and the upper portion (0 > p ) is concave with

the point of inflection at 0 -P.
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E U(O) =f U(O)d F(u X) (2)

where F(O I x) is the posterior distribution of 0 given observed score x. The

Bayes rule is to select a candidatLe with the highest expectLd utility.

Therefore, the computations of the expected tility become imjrtant

in the selection analysis.

As Lindley (1977) and Novick and Lindley (1978) indicate,

if one can match the function form of utility U(e) with the (posterior) di:;-

tribution F(e x) then the computations of expected utility become simple.

In most applications F(O I x) is or can be approximated by a normal distribution

.uynh (1979). Assume F(61 x) is a normal distribut.'ion with mean po and
2

variance ao, on [00, 0 1 then the expected utility of the TNU in (1) is

o a

E u(6)' d .0) 0
0 (b - a)(b o - a) 

0
_ _ _a CO. a , n < 0

(b -a) (b o -a) b - a

Pr(- 0 0) a < 0 < 0

(b-a)(bo- a -

Pr(C - 0 < 0, 0° < < -- --- _ a (3)

(b - a)(b o - a0 ) b- a

where a - ( , b - n , a0 - l
0
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bo -,and & and 0 are two independent random variables such that0

CN(Ua) and 0.N(Po ,U). SinceCand Oare both normal, ( -0 , ) has

a bivariate normal distribution with mean ( j - o ,o) and covariance

matrix ( + 02 U2

0~ 2  a2

0 ao

The expected utility can be obtained by computing the probability

of the bivariate normal variable over the region C - 0 < 0 and 0 < 0<0
Tables for bivariate normal probabilities are compiled by the (U.S.)

National Bureau of Standards (1959). If bo- a 1 e.g.S
0 < P0- 40 < 0 + 40 < 0 , then the expected utility in (3) is

E U() - r - 0 - OL) a
b-a b-a

c - a

1 b - a

where

C" ( C r 0 +O

and a, b, c may be obtained from a univariate normal distribution

table. A computer algorithm for computing bivariate

normal probabilities is given by Divgi (1979).

=77-7I



7m

In the previous discussions O is considered to be on the interval

[8 0, 0n, in some cases 6 may be defined beyond [0o, en] . For example,

in latent trait models the range of 0 is (-0, 0). In this case, we can

assign UM = 1 for O> 0 and U(O) = 0 for 0 < 0. Then the expectedasinU9 =1fr0 n  0

utility in (3) with F(0I x) defined over (-® , =) becomes

Pr(& -o <0, 0 < 8<0) - a
E U(6) (b a) + ( - b). (3)

where C, e, a , b and b are as previously defined.
0

In the problem of setting cut-off (passing) scores, it is necessary

to require monotonic expected utility. More precisely, for a given

, increasing utility function U(O) the expected utility should be a

monotonic function of x, the observed score. A sufficient condition for

monotonic expected utility is that the posterior distribution is

stochastically increasing in x, i.e. if x<x' implies F(8 x)> F(6 I x')

for all 6 (Chuang, Chen and Novick, 1981). It is easy to show that if the

mean Po of the normal distribution F(e x) is an increasing function of x

and the variance d is independent of x then F(O I x) is stochastically
0

increasing in x. So the expected utility in (3) or (3)' will increase

as x increases.
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We now give an example of applying the TNU to the regression

2model (Petersen and Novick 1976) y =a+8 (x - x) + e where e-,N(O, a2),

in the selection of applicants. The example is based on the data used

in Petersen's (1976) model for selection under restrictions. The

criterion variable Y is the first semester college grade-point average.

The ACT composite score is used for the predictor variable X. The

applicants can be divided into disadvantaged and advantaged groups.

The range of Y is from 0 to 4 and the range of X is from 0 to 36.

Table 1 gives the sample size of N, mean x and y, standara deviation

s and sy, correlation ry and regression coefficient a for each group.I

Table ] near here

I
Assume indifference prior distributions of a, 0 anda for each group,

then the posterior predictive distribution for y given an applicant with

score x is
0

y- [ 0+B(xo -x)] (4)

r N+l (Xo - R ~N -2
U-N' +  E(x 3i) 2j

where s 2 N s2 (1 - r )(N - 2) is the mean square error of the
y xy

regression equation. If N is large then the t distribution in (4)

is approximated by a normal variable and

N+l +(xQ,- x)2

N E(x_-)2 - 1

i " .
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Therefore, the posterior predictive distribution for y for a person

with score x°0 approximates to a normal distribution with mean

y + B (xo - x) and variance s. For a positive value of B, the

mean is an increasing function of xo, and the variance is independent

of xo, so the expected utility is increasing in xo -
Suppose the utility for disadvantaged group has mean 1.5 and

variance 2 and the utility for advantaged group has mean 2 and

variance 1.5, the expected utilities computed from (3) of each group are

given in Table 2. It is easy to see that of two applicants from

different groups with the same test score, the applicant from the

disadvantaged group is preferred. For the given data set and utility

functions, Table 2 can be used for the selection of applicants.

Table 2 near here



10

A Generalized Beta Utility

We now consider the use of a generalized beta cumulative distribution

as a utility function. Again, assume the range of eis [80, n]. A

generalized beta utility is defined as

8 r(a + b) (x - b-i ( -
SU(0) = d x e < 0 < e (5)

r(a)r(b) (0 e )a+b dx 0 -- n
n-0

0

The standard beta distribution has 0 = 0 and e 1. The risk aversion
o n

function for a GBU is

-r(0) b-1 a-1 o < e < e
(n- 0

Taking the derivative to find where the GBU has constant, decreasing or

increasing risk-aversion, we have

r'(0) b 1 + a- 2 < e
(en o) (6 - 0)

With the choices of a and b, beta utility provides a wide variety

of utility functions. For example, for a< 1 and b< 1 the GBU is risk

averse when e is less than 0 , and is risk prone when 0 is greater than

0a, where ea = [(a - 1) 0n - (b - 1) 0oJ/ (a + b - 2) is the antimode of

the generalized beta function. It has strictly decreasing risk aversion.

For a <1 and b - I the beta utility is risk averse through its range and

it has strictly decreasing risk aversion. For a< 1 and b> 1 the beta

utility is risk averse through its range and it has decreasing risk aversion

when 6<6b and it has increasing risk-aversion when 8> 8b where

1+ (a- i)) A decreasing risk-averse

utility function is useful in economic applications.
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In the previous section, we discussed some properties of the TNU

function. A GBU with a> 1 and b> 1 has similar characteristics. It is

increasing risk aversion. For a >1 and b >1 the beta utility is risk prone

when 8 > e and is risk averse when e < a , e is the mode of thea ~aa

generalized beta function. For a >1 and b - 1 the beta utility is risk

prone through its range. For a - 1 and b >1 the beta utility is risk

averse through its range. The last two types represent the lower half

curve and the upper half curve of a normal utility respectively. Finally,

for a l 1 and b - 1 the beta utility is equivalent to a TNU with a -.

We summarize the above results in Table 3.

Table 3 near here

The expected utility of a GBU can be computed by simple numerical

integration. If a and b are integers, the beta utility in (5) becomes

a polynomial utility with degree a + b - 1. Then expected utility is the

linear combinations of the moments of the posterior distribution F(Ix).

The moments for many common probability distributions are tabulated and

could be used in the calculations of the expectation of a polynomial

utility.

If F(8 jx) has a beta distribution then the expected utility becomes

one beta variable less than or equal to another beta variable. Assume 6

and 6 are two independent beta random variables with distributions U(6)

and F(O jx) respectively. Then the expected utility of a GBU in (5) is

E u(e) - Pr (Q < 0)
0 - 00

Note that the beta variable 0 is also defined on [8 , 8 ). Let and
0 ne n eo

then and 0' are usual beta random variables defined on [0,1 and
en e0

Pr(Q 0 ) Pr (&" < 0').

iL =
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Hence

E U (0) = Pr ( 'c 0)• (6)

The probability on the right hand side does not depend on 8 or 8 .o n

A formula for computing this probability is given in Altham (1969) and

Weisberg (1972).

We now provide an example of the use of the beta utility when the

" test scores follow a beta-binomial model. This model has been used

extensively in the theory of criterion-referenced testing by Huynh and

others. For a test of n items, given an applicant with ability 8 the

probability that he answers x items correctly is a binomial distribution.

* Assume a person's ability has a beta distribution with parameters p and q.

1Then the posterior distribution of 0 given x is a beta (p + x, q + n - x).

If a, b, p, q are integers, Altham (1969) provided the following formula

for computing the probability in equation (6):

E U(e)- >1 ap + q + n s
T a + b + p + q + n- 2)

s - max (p+ x - b,O p + q + n - 1

--Again, consider the selection on the restricted model. Suppose the

utility for the disadvantaged group has beta cumulative function with

parameters 2 and 4 and the utility for the advantaged group has beta cumulative

function with parameters 2 and 2. Assume indifference prior (Novick and

Jackson 1974, p. 156) for each group, i.e. p - q - 0. For a test of 16 items

the expected utility of each group is given in Table 4. It is easy to see

that the expected utility is an increasing function of test score. In fact,

the expected utility preserves the shape of the utility function. For example,

for the advantaged group the expected utility is symmetric at the score of 8.

Table 4 near here
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Fitting a Utility Function

We have seen above that there are some advantages in using the

cumulative normal or beta distribution function as a utility function.

In this section we consider a least-squares procedure given in Novick and

Lindley (1979) to fit the parameters (TlT2 ) of a utility, where (TlX 2)

are (po) for a TNU and (a,b.) for a GBJ.

Consider (n+l) points with 6o <0 1 < ...<0n and let U(Oi) =Ut

fi -0,1, ... , n. For a given triplet (Gi , 0 , 8), a subject is

asked to compare 0. for sure with a gamble on . and Ok where i<j <k.

Specifically, the subject is required to state a probability, Pijk

*Isuch that he is indifferent between 0 for sure and the

gamble: chance pijk of 0 k and 1 - pijk f 01 Then

Uj i ijk Uk + (1 -Pijk U i

or

p U -U
ijk .-

1-Pijk Uk - u

(i) If U(6) is a TNU function, then

EL4 4(7)
LP- e k a

'A_
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(ii) If U(O) is a GBU function, then

eo U . 01 0

n/o o (PiJkn 0n o

1n 0o 0 U* n _ 00)

where UA() is a standard beta distribution function, i.e.

:( - r(a + b) a-i b-1
U'0") -(() r(b) x (l-x) dx, 0 < G'< 1.

0

Two values jk are sufficient to determine T, and . For checking

- the coherence subject is required to assess more than two indifference

probabilities Pijk" Making the same assumption as in Novick and

I LindLey (1979) about the use of log-odds, a utility can be fitted by

minimizing the following sum of squares with respect to T and T

(log 1 k - log

uk (ijk k j
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An example of using the least-squares procedure to fit a TNU and a GBU

for a state university administrator on grade point average (CPA)

is given below. The range of CPA is from 0 to 4, 14 different gambles

arc formed from the 9points 0,0.5, 1, 1.5, 2, 2.5, 3, 3.5, 4. The

list of the gambles is shown in column 1 to 3 of Table 5. (There

are 84 possible gambles). For each gamble the assessed indifference

probabilities are given in column 4. The Gauss-Newton method was used

to minimize sum of squares. The algorithm is given in the appendix.

The parameters of the fitted normal and beta utility are (1.44, 0.84)

and (1.72, 2.99), respectively. The fitted utilities for the nine

Points are given in column 5 and 6. Two utilities are reasonably

close to each other. The fitted beta has a mean of 1.46 and a mode of

1.06. The utilities rise very rapidly for GPA below 2 and very slowly

for GPA above 3. Perhaps, this is the state university regulation

that requires a continuing average of 1.0 to remain in college on

probation, an average of 2.0 to maintain regular status and an average

of 3.0 to take honor courses. Finally, for the comparison of the

goodness of fits, the utilities from nine points least-squares fit

are given in column 7. It also shows that the utilities at GPA - 0.5,

1, 1.5, 2 increase most rapidly, and the three fits are very close

for GPA above 1.5.

Table 5 near here
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_0 t
Note that equation (7) is independent of a - 4(----)

b - a ). This procedure will fit the best normal curve over

the interval [0, nJ. However, if v is far from the midpoint of eo

and e or/and a is large then the performance of the fitted procedure
n

ai will decrease. We briefly examine this difficulty by using the Monte

Carlo methods for the model

log 1- = log 0 + 

14 gambles are used for each fit, the (i, j, k) are generated uniformly

from the 84 gambles and the error v from independent N(O, ) popula-

. , tion. Table 4 gives the average of 25 fitted mean and standard deviations

for each combination of p2, 2.5, 3, 4 and (7=0.5, 1, 1.5, 2. The standard

error of the averages are also provided. They are indicated in

parenthesis. We consider the biases (Ifitted-truel) and standard

errors of the fitted values as a measure of the performance of the

procedure. Table 4 indicates that an increase of oorp worsens the fit

as one would expect. Forp- 4 and (- 0.5, the utilities for O< 3

are so close together (close to 0) that the procedure does not

converge. This also suggests that O i should be chosen so that the

utilities of U(O ) increase significantly at each 01.

Table 6 near here
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Fitting a Utility in Two Groups

The problem of using probability distribution function as a

utility function arises when the utilities are specified for more

than one group. In the previous section, both utility bounds for

advantaged and disadvantaged groups are assumed to be 1 and 0. This

may not be true in some situations. For example, of two applicants

with the same GPA of 4, one may prefer the disadvantaged group

applicant. Therefore, it is important to check coherence between

groups on multiple groups assessment. We now give a procedure to

exploit coherence between groups. We will use GPA as an example to

describe the procedure.

Let UD(0) and U (e) be the utility function for disadvantagedD A
and advantaged groips respectively. Suppose selecting a disadvantaged

group applicant with GPA of 4 has the highest utility of 1 and select-

ing an advantaged group applicant with GPA of 0 has the lowest utility

of 0. Hence, UD(4)-l and U A(0)-O. Consider the utility for disad-

- ~ vantaged groups, for a given GPA of 61 , the subject is asked to

compare the following two options:

For sure disadvantaged group applicant with GPAm0i

and

p disadvantaged group applicant with GPA-4

1-p advantaged group applicant with GPA-O

Let p be the probability for which the subject in indifferent between

the two options. Then

I ..l i ........ ..ir ........I
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UD(Oi) (1 -U ) UA (0) + pi UD(4)

Pi (8)

for any i. Assume UD(e) and UA(6) are two cumulative utility functions

elicited independently from the procedure described in the last section.1

Because UD(0) and U D(0) are two utility functions for the same population,
iD

we have

tUD(8) =I + 8D UD(0)

D 1 -D ) + 8D UD(O) 
(9)

The last equation follows from UD(4) = UD(4) = 1. Substituting (8)

into (9) and simplifying gives

(1 -pi) = BD (1 - UD(Oi))

4 OD can be solved immediately from Pi and UD(Oi). Note that for

coherence, v should be less than or equal to I (or U(ei) should be

less than or equal to p Equation (10) is a linear regression

equation without intercept. By assessing at different 0 points,

the least squares procedure for estimating cDm be used for checking

coherence. Similarily, the utility for advantaged group is

UA() BA UA() 0 < aA < I

And 0A can be estimated from the regression line

Pi = 08 A UA(d(11)

where p, is the indifference probability between the two options:
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For sure advantaged group applicant with GPA-Oi

and

p disadvantaged group applicant with GPA-4

I-p advantaged group applicant with GPA-0

If aD and 8A are the least squares solutions from equation (10) and (11)

then the assessed utillty for the two groups are

D(e) (I - OD) + aD UD(e)

and

A AA
UA(e) - BA UA(8)•

Since the two bounds of UD(0) and UA(W) are not 0 and 1, they cannot be

considered as a cumulative distribution function; however, they

retain all the properties of a TNU described above. The expected

utilities can be computed directly from E(UD(0)) and E(UA(O))

respectively, i.e.

E UD(e) (1 - OD + aD E UD(O)

and

E U (A) $A E UA (0).
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Note we assume that the highest utility and the lowest utility

are in two different groups, i.e. UD(4) = 1 and UA(0) = 1. Suppose

the two extreme utilities 0 and 1 occur in the same group. Without

loss of generality, it could alternatively be assumed that UA(4) - 1

and UA(0) = 0, then only the utility for the disadvantaged group has

to be rescaled. Following the same arguments described above we have

Pi =  D + aD U 
0 <D 0 < D < 1  (12)

where P, is the indifference probability for the two options

For sure disadvantaged group applicant with CPA- 6

and

" 1I1-P advantaged group applicant with GPAO.

a and BD in (12) can be estimated by fitting the linear regression line.

If aD and 0D are two fitted values, then the utility for the two groups

are

UD(e) -O D + 8D  D~e

and

U (a) =U (e).
A A



21

Summary

The use of some simple utility or loss functions in educational

or employment evaluation has recently been studied by Petersen (1976)

Huynh (1976, 1977), Van der Linden and Mellenbergh (1977). Novick

and Lindley (1978) demonstrated that more realistic utility functions

can be easily used without increasing the complexity and may be

preferable in some applications.

This paper illustrates the use of a truncated normal or a

generalized beta cumulative distribution function as a utility function.

They are more flexible than threshold or linear functions. If a

person's utility function can be fitted to a distribution function

* Ithe analysis of utility is simple and easy. For example, its

derivative is the familiar density function. It provides the rate

of the increase of utility. However, one should not force a person's

utility function into this form if it does not fit.

I
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Table I Sample Data for the Use of
Truncated Normal Utility for
Educational Selection

Group N x S x S r 8

i x y xy

Disadvantaged 305 13.47 4.787 1.68 1.088 .2772 .063

Advantaged 2182 19.03 5.276 2.07 1.015 .3732 .072

Source of Data - 1971 ACT Research Services used in Petersen (1976).

i I

"J

.<1



25

Table 2 The Expected Values of Two Truncated Normal Utilities

Disadvantaged Advantaged

Po 
= 1.5 -40 M 2

a -2 M 1.5
0 

0

2 0.298 0.197

4 0.324 0.222

6 0.353 0.250

8 0.382 0.280

10 0.413 0.312

12 0.444 0.347

14 0.476 0.383

. 16 0.509 0.421

18 0.542 0.460

20 0.575 0.499

22 0.607 0.538

24 0.639 0.577

26 0.670 0.615

28 0.700 0.651

30 0.729 0.686

32 0.756 0.718

34 0.782 0.749

36 0.806 0.776

Li F1
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Table 3 Risk Aversion Properties of Beta Utility Functions

r(e) r' (0)

a < + if 0<0
a

b < 1 0 if 0-e a
- if 6 > e

a

al +

b"-

a < 1 - if < 6b

b> 1 + 0 if O 6b
+ if e > b

a i
" 0 0

bl +
a - 1

b> 1 
+

a> 1 + if i<f
b

b< I o if e b

if e > eb

a > 1 +

a > 1- if 0< 0
a

b > I o if e - ea  +

a

(a-1)on- (b-i) o0 0 n-  Ooe -e --l
0a (-b-2) b r .+/ I

I,/ a-l P
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Table 4 The Expected Values of Two Generalized Beta Utilities

Score Disadvantaged Adveataged

a 2 a 2

b-4 b- 2

1 0.053 0.020

2 0.140 0.056

3 0.249 0.108

4 0.366 0.172

5 0.483 0.245

6 0.594 0.326

. 7 0. 693 0.A12

8 0.779 0.500

" 9 0.8"a 0.588

10 0.902 0.674

11 0.942 0.755

12 0.969 0.828

13 0.986 0.892

14 0.995 0.944

15 0.999 0. 980
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Table 5 Fitted Least Squares Utilities for a
University Administrator

Gamble Nomal beta 9 point
Fit Fit fit

For sure 1-P P IF

0.0 -- -- -- 0 0 0

0.5 0.0 1.0 .68 .09 .12 .19

1.0 0.5 1.5 .30 .27 .33 .28

U 1.5 1.0 2.0 .45 .51 .55 .48

2.0 1.5 2.5 .59 .74 .74 .72

2.5 2.0 3.0 .66 .89 .88 .89

3.0 2.5 3.5 .78 .97 .96 .97

3.5 3.0 4.0 .80 .99 .99 .99

4.0 -- -- -- 1.00 1.00 1.00

1.0 0.0 2.0 .38

1.5 0.5 2.5 .41

2.0 1.0 3.0 .63

2.5 1.5 3.5 .79

3.0 2.0 4.0 .92

1.5 0.0 3.0 .50

2.0 0.0 4.0 .72

- --.- L.. .#iiEiEIIt Uhi~I
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Table 6 Simulated Studies for the
Performance of normal utility fits for
Various p and a

2 2.5 3 4

2.00 (0.038) 2.51 (0.053) 2.97 (0.042) X
0.5 0.50 (0.015) 0.50 (0.017) 0.49 (0.009) X

1 1.97 (0.123) 2.48 (0.131) 2.85 (0.172) 3.54 (0.240)
0.99 (0.110) 1.01 (0.117) 0.95 (0.090) 0.88 (0.067)

2.02 (0.305) 2.44 (0.340) 2.77 (0.262) 3.24 (0.362)1.5
1.59 (0.555) 1.46 (0.304) 1.35 (0.254) 1.18 (0.187)

1 1.88 (0.560) 2.40 (0.396) 2.84 (0.477) 3.28 (0.500)
2 1.93 (0.600) 2.11 (0.717) 2.02 (0.475) 1.62 (0.317)

i
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Least-squares procedure to fit a normal or a beta cdf utility

Appendix

Let PiJk be the indifference probability for the triplet

(613j8ek) then

U(ej) = Pijk U(ek) + (1-Pijk) U(ei)

We will minimize the following sum of squares with respect to the

parameter T = (T1 , T2) of U(O)

________U(0 1  U(ei 2
Q log - log )U(e U(8 (Al)

uJk - PiJk k

Pijk ueand l) - U(ei)Let log 1-Pijk Yjk u(ek) - U(ej) fijk ()

Consider the function y - f(1) the first-order Taylor series
T(0)

expansion for the function about is

Y - f('(0) " ) (0)-- ( 0) ) + " f("2 ~ ) (0 T2) + R

where R is the remainder. The least-squares solution for the linear

model
YJk - fiJk b f + b + R

1ij f use 2o 2 fpouak tok

can be used to approximate the solution in (Al).
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If we write

f a f ,

3 ijk, 3-T iJk( 0 )  = l k - f l

and V- f(0). I

J (0)T T" T - (0)

then the least-square estimate of b is

b(O)x (x (O)x(0) -1 rxO) (Y- f(O))

T can be estimated by the interactive process from the above equation,

that ik

T(n+l) . T (n)+ b(n)

W (n)+ (x*(n)(n))-l x( () -(n)

We now give the derivate for two useful paramtric utility functions:

(1) U(S) is a normal or truncated normal cdf with man V and variance o2

i.e. U(S) -

Then

a f (V1 u) #k #i--

3 ik  0(4o - 'a

a f(0 i ) 4 ( 1 ) !1k -

(a ~ u Ijk 2 0 ei 2 ( 4 4)k ej ¢

where * " *(') *i " * )and #()
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(2) U(S) is a beta cdf with paramters a and b, i.e.

U~e) a-l(I- x) b dx *Then

f (a~b) J. j

3 a ijk~ab - Uj

f b j(a~b) U

a e bSj

where Ujj f~ - bi (1 -X) b1dx,, 01j log x x a-1 (iX)b-1 dx

and w1  J log (lX) xa-l (_X) b-i x
and w - dS
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